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LElTER TO THE EDITOR 

Relative positions of limit cycles in a Kolmogorov-type system 

Xun-Cheng Huang 
Department of Mathematics, New Jersey Institute of Technology, Newark, NJ 07102, USA 

Received 2 December 1988 

Abstract. To estimate the relative position of limit cycles for a system is always useful in 
the qualitive analysis of the system. If the system has only one limit cycle, determining 
the position of the limit cycle is more important. In this paper, we construct an annular 
region containing all the limit cycles for a Kolmogorov-type system. Since the system 
contains the Lotka-Volterra, Gausse, Kuang and Freedman, and Huang models as special 
cases, the results obtained here are also valid for those models. Furthermore, the approach 
to the location of limit cycles in this paper is very applicable because the region is easy 
to compute. 

Our Kolmogorov-type system is 

(1) _- dx 
d t  -= 4(x) (F(x)  - d Y ) )  dy- d t  P(Y)(+(X) - 5 ( Y ) )  

where x is the prey density, y is the predator density, q5(x)F(x) is the intrinsic growth 
rate of the prey in the absence of predators, and p(y)((y) is the intrinsic rate of the 
increase (or decrease) of the predator. The term q5(x)r(x) represents the functional 
response of the predator, i.e. 

+ ( X I  d Y  ) l x  

is the rate of prey consumption per predator. Most authors simply take ~ ( y )  = y, but 
a function ~ ( y )  that increases in a slow linear fashion could be used to model 
interference among the predators with each other’s hunting, or a faster linear increase 
could be used to model predator cooperation (Harrison 1979). The term p(y)+(y) is 
the response of the predator which means the difference of the actual rate of increase 
and the intrinsic rate of increase of the predator. The equation 

(P(Y)+(O)+ 5 ( Y ) ) l Y  
is the death rate of the predator in the absence of prey. 

following models: 
Clearly, system (1) contains the Lotka-Voleterra model, the Gause model, and the 

(2) -- dx 
dt  -= X d X )  - S(.Y)P(X) dy- d t  r(Y)(-Y+dX)) 

(Kuang and Freedman 1988) and 

(Huang 1988a, 1989, Huang and Merill 1989). 

(3) 
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The stability and instability of equilibrium points, the existence, uniqueness and 
non-uniqueness of limit cycles for the systems (3) have been thoroughly studied (Huang 
1988a, b, 1989, Huang and Merill 1989). Of course, theorems for system (3) are also 
true for the Lotka-Volterra, Gause and Kuang-Freedman models because (3) is a 
generalisation of all these models. 

For the Kolmogorov-type model ( l ) ,  we have already proved the existence and 
uniqueness of limit cycles (Huang 1988~).  In this paper, we try to estimate the relative 
position of the limit cycles. 

Our fundamental assumptions in this discussion are the following. 
(i) 4, $, n, p, ,$E C'CO, CO); 4(0) = n ( 0 )  = p ( 0 )  = ,$(O) = 0; @'> 0 for x s 0; n'> 0, 

p f  > 0, 8's 0 for y 3 0; there exist x > 0 such that $(x) = 0 and $'(x) > 0 for x f x. 
(ii) There exists k > x such that F (  k )  = 0, F'( k )  < 0;  F ( x )  > 0 for all 0 < x < k, and 

for any f >  k, F'(@ # 0 if F(E)  = 0. 
(iii) There exist positive numbers M and 

and there also exist positive N and eN such that p ( y )  > Ny for y 2 E ~ .  

We restrict our discussion to the interior of the first quadrant CL. These assumptions 
guarantee that there exist limit cycles surrounding the unique positive equilibrium 
(x*, y* ) ,  where 0 < x S x* < k, y* > 0. For the uniqueness of limit cycles we need one 
more assumption (Huang 1988~).  

It is possible to have F ( 0 )  = 00 in most of our discussion. In that case (0,O) is no 
longer an equilibrium. 

The problem of determining the relative positions of limit cycles is important 
especially when the system has only one limit cycle. Usually, authors use the Poincare- 
Bendixson annular boundaries to estimate the location of the limit cycles. (See, for 
example, Ye er a1 1986). For predator-prey systems, several results have been reported 
(Conway and Smoller 1986, Freedman and Wolkowicz 1986, Kuang 1988a) but none 
of them are being carefully studied. 

such that ~ ( y )  > M p ( y )  for y 2 

The following lemma is important for the proof of theorem 1. 

Lemma 1. Every solution in 0 of the system 

is periodic, where 4(x), +(x), n ( y )  and p ( y )  satisfy the assumption (i). 

ProoJ Let (xo, yo) # (x*, y*)  be an initial point in 0. The corresponding trajectory r 
of (4) satisfies 
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But 

This contradiction completes the proof of lemma 1. 

Theorem 1. Let f = m i n { x ) F ( x ) = F ( x * )  and x>x*}, and let A={(x ,y) lx*S 
x s 2,7r(y*) c r ( y )  s F(x)}. If 

(Wx) - dY))(llr(X) + 5 ( Y * ) )  3 (F(x*) - +))(llr(x)+ 5 ( Y ) )  (8) 
for 0 < x < x*, then A is inside of all the limit cycles of (1). 

ProoJ Suppose L is a limit cycle of (1) surrounding (x*, y*). By the phase portrait 
analysis (Huang 1988c), L intersects the prey isocline F (x )  - n ( y )  = 0 exactly at two 
points. 

Consider the system 
dx 
dt  

dt  

-= +(x)(F(x*)-  d Y ) )  

(9) -- dy- P(Y)(llr(X) + 5 ( Y * ) )  

x(0) = xo Y ( 0 )  =yo. 
Lemma 1 implies that all the solutions of (8) are periodic. Furthermore, each periodic 
orbit has two intersection points with the predator isocline $(x) + 5 ( y )  = 0. Denote 
them as Po(xo, yo) and S(Po)  = Ps(xs, y s ) .  Clearly, S ( P s )  = S ( S ( P o ) )  = Po. Let r ( p )  be 
the length of the curve along $(x)+[(y) = O  from points (s, 0) to P. Then the bigger 
the r (Po) ,  the smaller the r (P , )  (see figure 1). 

X - X' I k 

Figure 1. The flow of ( 1 )  (full curve) is always directed outwards with respect to the flow 
of (9) (broken curve). 
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According to the definition of A, if (2, y * )  is inside L, then so is A. Suppose (3, y*)  
is not in L. Consider two vectors in the space 

then 

( F ( x )  - 7 I . ( Y ) ) ( $ ( X )  + 5 ( Y * ) )  3 ( W * )  - d Y ) ) ( $ ( X )  + 5 ( Y ) >  (12) 
for x* < x < 2. Therefore, from (8) and (12) we have, for 0 < x < 2, 

4(X)P(Y)[ (F(X)  - d Y ) ) ( $ ( X )  + 5 ( Y * ) )  - ( W * )  - . r ( v ) ) ($ (x )  + S(Y))I 3 0. 

Hence, the flow of (1) is always directed outwards with respect to the flow of ( 9 ) .  
Thus, if Po(xo, yo), P l ( x l ,  yl)  are on L and Po(xo, yo), Ps(xs, y s )  are on one of the 

closed orbits of (9), then, comparing the trajectories of the two closed orbits in 

Similarly, in Ro = { (x ,  y )  I $ ( x )  + [ ( y )  < 0}, considering the trajectories of two closed 
orbits initiating at P l ( x l ,  y l ) ,  we have r (Po)  < r ( S ( P l ) ) .  Since r ( P l )  > r ( P s ) ,  r ( S ( P , ) )  < 
r ( S ( P , ) )  = r (Po) .  This is a designed contradiction which ends the proof of theorem 1. 

0 

a1 = { (x ,  Y )  I $ ( x )  + 5 ( Y )  > 01, r(P1) > r (Ps)  (see figure 1). 

Theorem 2. Let I > O  be a constant such that 

Then all the limit cycles of the system (1) are contained in the region B, where 
B = B1 v B2,  

Bl = { (x ,  y )  10s x s x*, O S  y S I(k - x*)}  

B ~ = { ( x ,  y )  Ix* x S k, OS y S l ( k  - x ) } .  

Boo$ Define vectors v and -T as 

- dx dy v = - - o  
( d t ’ d t ’  ) 

if O S  x~ x*, y = l ( k  - x*)  
if x* s x s  k, y = l ( k - x ) .  (14) -T=(( t1 ,  f * ,  t3)= 

Since 
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then if we can prove that 

dx 
*+t,-<o for O ~ x s  k 
d t  dt  

then B is invariant under (1). 
By (14), t2 = O  when O < X C X * ,  and then 

t2 = 1, y = l ( k  - x)  when x* d x C k, and consequently dyld t  + 1 dxld t  G 0 by 
(13). 0 

Therefore, B contains all the limit cycles of the systems (1) since E is invariant 

Theorems 1 and 2 imply the following estimation of the relative position of the 
under (1). 

limit cycles of (1). 

Theorem 3. In addition to the assumptions (i)-(iii), if (8) and (13) hold, then all the 
limit cycles of (1) are in the annular region B\A. 

Let us conclude by discussing a number of points. 
(1) The sets A and B are easily constructed and the region is explicitly computable. 

(2) It is easy to see that the set A can be extended as 
Thus, the theorems here are practically useful. 

A'={(x,y)Ix*SxS.f ,  $ ( x ) + t ( y ) > O , y * ~ y ~  r - ' ( F ( x M ) )  

~ ( y )  G F ( x )  for XM G x G R where F ( x M ) =  max { F ( x ) } } .  
x*=zx<z 

(3) If t (y)  = O  in ( l ) ,  then the system reduces to the system (3) (Huang 1988a, b, 
1989, Huang and Merrill 1989). The condition (8) in Theorem 1 can be reduced to 

F ( x ) s  F ( x * )  for O<x<x*  

which is easier to check. 
(4) The technique in this paper is similar to that used by Kuang (1988), but his 

model is a special case of our system. Also, he needs more assumptions for the existence 
of limit cycles in his model and his proof needs to be amended. For example, he used 
the expression xg(x)/p(x) very often, such as 

a1 = max{t-'(xg(x)/p(x)) I x E (0, k) l  a2 = min{t-'(xg(x)/p(x)) Ix E (0, x*)l 
(see p 78 of Kuang 1988), but it is not always valid since p ( 0 )  = 0. 

of limit cycles, but, of course, it needs more computation. 
( 5 )  We can use the same technique to obtain better estimates of the relative position 
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